On Non-Invariant Hypersurface with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of P-Sasakian Manifold

Vivekanand yadav¹ and Dhruwa Narain²

^{1,2}Department of Mathematics and Statistics, D.D.U Gorakhpur University, Gorakhpur-273009

Abstract: - The object of present paper is to study the hypersurface \tilde{M} of a P-Sasakian manifold M equipped with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure and investigated the results when $\tilde{\phi}, U, V$ are parallel fields. Some properties of normal para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure also have been studied.

Keywords: - *Hypersurface and P- Sasakian manifold.* **2000 Mathematical Subject Classification:** 53C25, 53C40, 53C10,

INTRODUCTION

Let *M* be an *n*-dimensional differentiable manifold on which there exists a (1,1) tensor field ϕ , a vector field ξ and 1 – from η satisfying

(1.1) $\phi^2 = I - \eta \otimes \xi$

(1.2) $\eta(\xi) = 1$

(1.3) $\eta o \phi = 0$

 $(1.4) \quad \phi\xi = 0$

is called an almost para contact manifold and the structure (ϕ, ξ, η) is called an almost para contact structure. Let g be a Riemannian metric with (ϕ, ξ, η) -structure such that

(1.5) $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$ or ,equivalently, (1.6) $g(\phi X, Y) = g(X, \phi Y)$ and $g(X, \xi) = \eta(X)$ for all vector fields *X*, *Y*.

Then *M* is called an almost para contact Riemannian manifold or an almost para contact metric manifold with an almost para contact Riemannian structure- (ϕ, ξ, η, g) .

Definition: An almost para contact Riemannian manifold is called P-Sasakain manifold if

(1.7) $(\nabla_X \phi)(Y) = -g(X,Y)\xi - \eta(Y)X + 2\eta(X)\eta(Y)\xi$

for all vector fields X, Y.

where ∇ denotes the operator of co-variant differentiation with respect to Riemannian metric g.

On P-Sasakian manifold, we have

(1.8) (a)
$$(\nabla_X \eta)(Y) = g(\phi X, Y) = (\nabla_Y \eta)(X)$$

(b) $(\nabla_X \eta)(Y) = \Phi(X, Y)$ where $\Phi(X, Y) \stackrel{\text{def}}{=} g(\phi X, Y)$
(c) $(\nabla_X \xi) = \phi X$

I.

II. HYPERSURFACE OF A P-SASAKIAN MANIFOLD WITH PARA $(\tilde{\phi}, \tilde{g}, u, v, \lambda) - \text{STRUCTURE}$

Let M be n dimensional Riemannian manifold. Let us consider a (n-1) dimensional differentiable manifold \widetilde{M} embedded in M with embedding $b: \widetilde{M} \to M$. The map b induces a linear transformation map (called Jacobi map) $B: T_p \to T_{bp}$.

Let an affine normal N of \widetilde{M} is in such a way that ϕN is always tangent to the hypersurface and satisfying the linear transformations.

- (2.1) $\phi BX = B\tilde{\phi} X + u(X)N$
- $(2.2) \qquad \phi N = BU$
- (2.3) $\xi = BV + \lambda N$
- $(2.4) \qquad \eta(BX) = \nu(X)$

where $\tilde{\phi}$ is (1,1) type tensor; U, V vector fields; u, v are $1 - \text{form and } \lambda$ is a $c^{\infty} - \text{function}$. If $u \neq 0$, we call \tilde{M} a non-invariant hypersurface of M [2].

Operating (2.1), (2.2), (2.3) and (2.4) by ϕ and using (1.1), (1.2), (1.3) and (1.4) and taking tangent and normal parts separately, we get the following induced structure on \tilde{M} ,

 $\tilde{\phi}^2 X = X - u(X)U - v(X)V$ (2.5)*(a)* $v(\tilde{\phi}X) = -\lambda u(X)$ $u(\tilde{\phi}X) = -\lambda v(X),$ (b) ðU $= -\lambda V$, $\tilde{\phi}V = -\lambda U$ (*c*) $=1-\lambda^2$, u(V) = 0(*d*) u(U) $v(V) = 1 - \lambda_1^2$ where $\eta(N) = \lambda$ v(U) = 0,(e) From (1.5) and (1.6), we get the induced metric \tilde{g} on \tilde{M} . *i.e*; $\widetilde{g}\left(\widetilde{\phi}X,\widetilde{\phi}Y\right) = \widetilde{g}\left(X,Y\right) - u(X)u(Y) - v(X)v(Y)$ (2.6)(2.7) $\widetilde{g}\left(U,X\right)$ = u(X), $\widetilde{g}(V,X) = v(X)$ $\widetilde{\Phi}(X,Y)$ $= \widetilde{\Phi}(Y, X)$ (2.8)where $\widetilde{g}(\widetilde{\phi}X,Y) \stackrel{\text{def}}{=} \widetilde{\Phi}(X,Y)$ A manifold \widetilde{M} with a metric \widetilde{g} satisfying (2.5), (2.6) and (2.7) is called manifold with

A manifold M with a metric \tilde{g} satisfying (2.5), (2.6) and (2.7) is called manifold with $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure [3].Let $\tilde{\nabla}$ be the induced connection on the hypersurface \tilde{M} of the affine connection ∇ of M.

Now using Gauss and Weingarten's equations

(2.9) $\nabla_{BX} BY = B\widetilde{\nabla}_X Y + h(X, Y)N$ (2.10) $\nabla_{BX} N = -BHX + \omega(X)N$ where $h(X, Y) \stackrel{\text{def}}{=} \widetilde{g} (HX, Y)$

Here *h* and *H* are second fundamental tensors of type (0,2) and (1,1) respectively and ω is 1 – from.Now differentiating (2.1), (2.2), (2.3) and (2.4) covariantly and using (2.9), (2.10), (1.7) and reusing (2.1), (2.2), (2.3) and (2.4), we get the following theorem;

Theorem (2.1): Let \tilde{M} be the hypersurface with $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ – structure of a SP-Sasakian manifold M, then we have

- $(2.11) (a) \quad \left(\tilde{\mathcal{V}}_X \tilde{\phi}\right)(Y) = -\tilde{g}(X, Y)V v(Y)X + 2v(X)v(Y)V + u(Y)HX + h(X, Y)U$
 - (b) $(\tilde{\mathcal{V}}_X u)(Y) = -\lambda \tilde{g}(X,Y) + 2\lambda v(X)v(Y) u(Y)\omega(X) h(X,\tilde{\phi}Y)$

(c) $(\tilde{V}_X v)(Y) = \tilde{g}(\tilde{\phi}X, Y) + \lambda h(X, Y)$

- (d) $\tilde{\nabla}_X V = \tilde{\phi} X + \lambda H X$
- (e) $\tilde{\nabla}_{X}U = \omega(X)U \tilde{\phi}HX \lambda X + 2\lambda \nu(X)V$
- $(f) \quad h(X,U) = \lambda^2 v(X)$

Cor. (2.1):

(g) $h(X,V) = u(X) - X\lambda - \lambda\omega(X)$

Since $\tilde{g}(HX, Y) = h(X, Y)$ then from (2.7) and (2.11)(*f*), we have

 $h(X,U)\neq 0$

 $\Rightarrow HU = 0$

III. PARALLEL VECTOR FIELDS WITH RESPECT TO INDUCED CONNECTION

Let \widetilde{M} be the non-invariant hypersurface with para $(\widetilde{\phi}, \widetilde{g}, u, v, \lambda)$ –structure of a P-Sasakian manifold *M*. A vector field *P* is parallel with respect to the connection \widetilde{V} if $\widetilde{V}_X P = 0 \forall X \in \Gamma(\widetilde{M})$.

Theorem (3.1): If $\tilde{\phi}$ is parallel vector field with respect to induced connection in the non-invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ – structure of a P-Sasakian manifold M, then we have

(3.1) $(1 - \lambda^2)h(X, Y) = u(X)v(Y) - \lambda^2 u(Y)v(X)$

- (3.2) h(X,V) = u(X)
- (3.3) $\omega = -d(\log\lambda)$

Proof: If $\tilde{\phi}$ is parallel vector field, then $\tilde{V}_X \tilde{\phi} = 0$. Then from (2.11) (*a*), we have $-\tilde{g}(X,Y)V - v(Y)X + 2v(X)v(Y)V + u(Y)HX + h(X,Y)U = 0$

operating above by u and using (2.5) and (2.11)(f), we get (3.1).

Now putting Y = V in (3.1), we have (3.2).

Now from (2.11)(g) and (3.2) we get $\omega = -d(\log \lambda)$ **Theorem (3.2):** If U is parallel vector field with respect to induced connection in the non-invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of a P-Sasakian manifold M, then we have

(3.4)(a)
$$\omega = -\frac{1}{2}d\{\log(1-2\lambda^2)\}$$

(b)
$$h(X,\tilde{\phi}Y) = \lambda\tilde{g}(X,Y) - u(X)w(Y) - 2\lambda v(X)v(Y)$$

Proof: Since *U* is parallel vector field, we have $\tilde{V}_X U = 0$ From (2.11)(*e*), we get (3.5) $\omega(X)U - \tilde{\phi}HX - \lambda X + 2\lambda v(X)V = 0$ Operating (3.5) by *u*, we get (3.4) (*a*) Again from (3.5), we have $\omega(X)u(Y) - \tilde{g}(\tilde{\phi}HX, Y) - \lambda \tilde{g}(X, Y) + 2\lambda v(X)v(Y) = 0$ Using $\tilde{g}(\tilde{\phi}X, Y) = \tilde{g}(X, \tilde{\phi}Y)$ and $h(X, Y) \stackrel{\text{def}}{=} \tilde{g}(HX, Y)$, we get (3.4) (*b*).

Theorem (3.3): If *V* is parallel vector field with respect to induced connection in the non- invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of a P-Sasakian manifold *M*, then we have $(3.6)(a) \quad \omega = -d(\log \lambda)$

 $(b) \quad (\tilde{V}_X v)(Y) = 0$

Proof: Since V is parallel vector field, we have $\tilde{V}_X V = 0$

From (2.11)(d), we get

(3.7) $\widetilde{\phi} X + \lambda H X = 0$

Operating (3.7) by v we get (3.6) (a)

Using(2.11)(c), we have

Further from (3.7), we have

$$\widetilde{g}\left(\widetilde{\phi}X,Y\right) + \lambda \widetilde{g}\left(HX,Y\right) = 0$$
$$\left(\widetilde{V}_X \nu\right)(Y) = 0$$

Theorem (3.4): The Nijenhuis tensor of the non-invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of a P-Sasakian manifold *M* is given by

(3.8)
$$N(X,Y) = u(X)\{(\tilde{\phi}H - H\tilde{\phi})Y\} + u(Y)\{(H\tilde{\phi} - \tilde{\phi}H)X\} + \tilde{g}\{(H\tilde{\phi} - \tilde{\phi}H)X,Y\}U - 2\lambda\{(u \wedge v)(X,Y)\}V\}$$

Proof: The Nijenhuis tensor N of $\tilde{\phi}$ is given by

(3.9) $N(X,Y) = (\tilde{\mathcal{V}}_{\tilde{\phi}X}\tilde{\phi})(Y) - (\tilde{\mathcal{V}}_{\tilde{\phi}Y}\tilde{\phi})(X) + \tilde{\phi}(\tilde{\mathcal{V}}_Y\tilde{\phi})(X) - \tilde{\phi}(\tilde{\mathcal{V}}_X\tilde{\phi})(Y)$ Using equation (2.11) (*a*) in equation (3.9), we get (3.8).

Corollary (3.1): The Nijenhuis tensor of the non-invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of a P-Sasakian manifold M vanishes if $\tilde{\phi}H = H\tilde{\phi}$ and $u \wedge v = 0$ **Proof:** Putting $\tilde{\phi}H = H\tilde{\phi}$ and $u \wedge v = 0$ in equation (3.8) we get N(X, Y) = 0

4 Normal para $(\widetilde{\phi}, \widetilde{g}, u, v, \lambda)$ –structure:

A para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ -structure is said to be normal if the torsion tensor S of $\tilde{\phi}$ satisfies (4.1) S(X,Y) = N(X,Y) + du(X,Y)U + dv(X,Y)V = 0Where N is Nijenhuis tensor and (4.2) $du(X,Y) = (\tilde{V}_X \tilde{\phi})(Y) - (\tilde{V}_Y \tilde{\phi})(X)$

(4.3) $dv(X,Y) = (\tilde{V}_X v)(Y) - (\tilde{V}_Y v)(X)$

Theorem (4.1): Let $\tilde{\phi}H = H\tilde{\phi}$, then non-invariant hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of P-Sasakian manifold M is normal if, $u \wedge w = 0$ and $u \wedge v = 0$

Proof: Using equations (2.11) (a), (2.11) (b)(2.11) (c) in(4.2) and (4.3) we have

$$du(X,Y) = u(X)w(Y) - u(Yw(X) + \tilde{g}\{(H\tilde{\phi} - \tilde{\phi}H)X,Y\}$$
and $dv(X,Y) = 0$
Using above two equations and (3.8) in(4.1) we get

 $S(X,Y) = u(X)\{\left(\tilde{\phi}H - H\tilde{\phi}\right)Y\} + u(Y)\{\left(H\tilde{\phi} - \tilde{\phi}H\right)X\} + 2\tilde{g}\{\left(H\tilde{\phi} - \tilde{\phi}H\right)X,Y\}U + (u \wedge w)(X,Y)U - 2\lambda(u \wedge v)(X,Y)V\}U\}$

Now putting $\tilde{\phi}H = H\tilde{\phi}$, $u \wedge w = 0$ and $u \wedge v = 0$, yields S = 0. **Theorem (4.2)**: If the hypersurface \tilde{M} with para $(\tilde{\phi}, \tilde{g}, u, v, \lambda)$ –structure of P-Sasakian manifold M is normal then, we have

International organization of Scientific Research

(4.4) $\eta^{\alpha} (N(X,Y)) + (1-\lambda^2) d\eta^{\alpha}(X,Y) = 0$ (4.5) $\overline{N(X,Y)} - \lambda^2 N(X,Y) = 0$ Where $\overline{X} = \widetilde{\phi}X$ and $\alpha = 1,2; \eta^1 = u, \eta^2 = v$

Proof: Operating (4.1) by η^{α} we have (4.4). Barring (4.1) twice and using (2.5) (*a*), we get

(4.6) $\overline{N(X,Y)} + \lambda^2 \{ du(X,Y)U + dv(X,Y)V \} = 0$

Now multiplying (4.1) by λ^2 and subtracting with (4.6) ,we get (4.5).

REFERENCES

- [1] T. Adati : Hypersurface of almost para-contact Riemannian manifolds ,TRU(Math); 17(2) (1981),189-198.
- [2] S. I. Goldberg and K. Yano: Non-invariant hyper surface of almost contact metric manifolds, J. Math Soc. Japan Vol.22, (1970), (25-30).
- [3] Dhruwa Narain: Hypersurface with (f, g, u, v, λ) structure of an affinely cosymplectic manifold, Indian Jour.Pure and Appl. Math. 20 No. 8 (1989), 799-803.
- [4] Dhruwa Narain and B.B.Sinha : Hypersurface of almost para-contact metric manifold, Ind. Jour.of pure and App. Math Vol. 9(12),(1978)),(1298-1304).
- [5] Dhruwa Narain and Sachin Srivasatva :On the hyper surface of almost r-contact manifold journal of tensor society Vol.2, (2008), (67-74).
- [6] B.Y. Chen: Geometry of submanifolds, Marcel Dekkar, New York, 1973.
- [7] K. Yano and M.Okumura: Invariant sub-manifolds with (f, g, u, v, λ) structure Kodai Math. Sem. Rep. 24(1972),75-90.
- [8] Dhruwa Narain and Sachin Srivasatva Khushbu srivasatva: A note of non- invariant hypersurfaces of para Sasakian manifold, ISOR Journal of Engineering (IOSRJEN) Vol.2 ,(2012) ,363-368.
- B.B. Sinha and Dhruwa Narain: hypersurface of nearly Sasakian manifold, Ann, Fac, De Kinshasa Zaire Vol.3 (2), (290-304), (1977).
- [10] D.e.Blair and D.Ludden: Hypersurface in almost contact manifold, Tohoku Math J. Vol.22(354-362), (1969).
- [11] P.R Singh: A study of P-Sasakian manifold, Ph.D Thesis D.D.U. Gorakhpur Uni.Gorakhpur (1999).